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ABSTRACT

The primary weather challenge at the Cape Canaveral Air Station and Kennedy Space Center

is lightning. In this paper we describe a statistical approach that combines integrated precipitable

water vapor (IPWV) data from a global positioning system (GPS) receiver site located at the

Kennedy Space Center with other meteorological data to develop a new GPS lightning index.  The

goal of this effort is to increase the forecasting skill and lead time of a first strike at Cape

Canaveral and the Kennedy Space Center.  Statistical regression methods are used to identify

predictors that contribute skill in forecasting a lightning event. Four predictors were identified out

of a field of 23 predictors that were tested, determined using data from the 1999 summer

thunderstorm season.  They are maximum electric field mill values, GPS IPWV, nine-hour change

in IPWV, and K index.  The GPS lightning index is a binary logistic regression model comprised of

coefficients multiplying the four predictors.

When time series of the GPS lightning index are plotted, a common pattern emerges several

hours prior to a lightning event.  Whenever the GPS lightning index falls to 0.7 or below, lightning

occurs within the next 12.5 hours.  An index threshold value of 0.7 was determined from the data

for lightning prediction.  Forecasting time constraints based on the Kennedy Space Center (KSC)

criteria were incorporated into the verification.  Forecast verification results obtained by using a

contingency table revealed a 26.2% decrease from the Cape’s previous season false alarm rates for

a non-independent period and a 13.2% decrease in false alarm rates for an independent test season

using the GPS lightning index.  Additionally, the index improved the KSC desired lead time by

nearly 10%.  Although the lightning strike window of 12 hours is long, the GPS lightning index

provides useful guidance to the forecaster in preparing lighting forecasts, when combined with

other resources such as radar and satellite data.  Future testing of the GPS lightning index and the
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prospect of using the logistic regression approach in forecasting related weather hazards are

discussed.

1.  Introduction

Space launches and landings at the Cape Canaveral Air Station (CCAS) and the Kennedy

Space Center (KSC) are subject to strict weather–related constraints (e.g., Bauman and Businger

1996).  Nearly 75% of all space shuttle countdowns between 1981 and 1994 were delayed or

scrubbed, with about half of these due to weather (Hazen et al. 1995).  Of the various weather

constraints, the primary weather challenge is to forecast lightning 90 minutes before a first strike

and within a 20-nm radius of the complex.  The National Lightning Detection Network indicates

that this region has the highest lightning flash density in the country, averaging 10 flashes/km2/yr,

confirming that lightning has a significant impact on the Kennedy Space Center.  The first concern

is the safety of personnel working on the complex, and the next is protection for $10 billion rocket

launching systems and platforms that include the Space Shuttle, Athena, Pegasus, Atlas, Trident II,

and Titan IV.  Finally, delay costs can run anywhere from $90,000 for a 24-hour delay to

$1,000,000 if the Shuttle must land at another facility and be transported back to the KSC.

Modeling and observational studies conclude that patterns and locations of Florida

convection are related to the interaction of the synoptic wind field with the mesoscale sea-breeze

(Estoque 1962; Neumann 1971; Pielke 1974; Boybeyi and Raman 1992).  The sea-breeze

circulation and patterns of convection have different characteristics dependent on whether or not

the low-level flow has onshore, offshore, or an alongshore component with respect to Florida’s east

coast (Aritt 1993).
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Onshore easterly flow typically generates less vigorous convection than offshore westerly

flow (Foote 1991).  However, onshore flow is characterized by a shallow low-level maritime moist

layer, capped by a subsidence layer with dry conditions aloft, creating difficulties in predicting

convection associated with this type of regime (Pielke 1974; Bauman et al. 1997). Blanchard and

Lopez (1985) show that the majority of convection takes place in the sea-breeze and lake-breeze

convergence zones.  They state that deep convection is sparse and requires low-level forcing which

generally occurs only when the east coast sea-breeze has advanced westward and merges with the

west coast sea-breeze.  Although convection can develop independently of a sea-breeze frontal

merge, it is usually weaker than when the fronts merge.

Reap (1994) found that southwesterly flow tends to be more unstable and produce more

lightning strikes along the Florida east coast than easterly flow.  The southwesterly flow also

contains deeper moisture and accounts for two-thirds of the lightning strikes during the summer at

KSC.  In contrast, easterly flow only accounts for less than 5% of the total lighting flashes (Watson

et al. 1991).

The International Station Meteorological Climate Summary for Cape Canaveral (Mar 68- Feb

78) indicates an annual average of 76 days with thunderstorms. Most of the thunderstorms (81.2%)

occur from May through the end of September.  In fact, the 45th Weather Squadron (WS) at Patrick

Air Force Base can issue more than 1200 lightning watches and warning per year.

The 45th WS uses numerical weather prediction models and many observation systems to

detect and predict lightning in support of the space center needs. The latter include satellite data,

weather radars, rawinsondes, and five lightning detection systems.  The lightning detection and

ranging (LDAR) is a seven-antenna radio-wave time-of-arrival system that provides a three-

dimensional picture of in-cloud, cloud-to-cloud, cloud-to-clear air, and cloud-to-ground lightning.
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The Cloud to Ground Lightning Surveillance System is a 5-antenna magnetic direction finding

system.  The launch pad lightning warning system (LPLWS) is a network of 31 surface electric

field mills.  The national lightning detection network (NLDN) is a national network of magnetic

direction finding and time-of-arrival antennas.  The A.D. Little Corp sensor is an older system

using one antenna to estimate the lightning distance from the magnetic pulse change.  Most of

these lighting detection systems are more fully described by Harms et al. (1997).

For the 1999 thunderstorm season, the 45th WS capability to detect thunderstorms is 97.5%,

79.1% of which meet the desired lead-time.  The KSC false alarm rate is 43.2%.  There is room for

improvement in these statistics, particularly in reducing the false alarm rate.

GPS and the Role of Water Vapor

Water plays a critical role in a variety of atmospheric processes that act over a wide range of

temporal and spatial scales.  It is the most variable of the major constituents of the atmosphere.

The distribution of water vapor is closely coupled with the distribution of clouds and rainfall.

Because of the large latent heat release of water vapor during a phase change, the distribution of

water vapor plays a crucial role in the vertical stability of the atmosphere and evolution of storm

systems.

The water molecule has a unique structure that results in a permanent dipole moment that is

caused by an asymmetric distribution of charge in the water molecule. Several different

mechanisms have been proposed to account for generation of electrical charge separation in clouds.

However, only the polarization mechanism has been shown by numerical modeling to be capable

of generating the amounts of charge at rates typical of thunderstorms (e.g., Fleagle and Businger

1980, p. 139).  When collisions occur between the falling grauple and a cloud droplet or ice pellet,
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a negative charge is transferred to the grauple, leaving the droplet or ice pellet positively charged.

The smaller particle, now with positive charge, is carried upward in the updrafts, while the heavier

grauple carries the negative charge downward.  This process is reinforcing because as charges are

separated, the electric field strength increases, thus increasing both polarization and the transfer of

charge occurring at each collision.

Bevis et al. (1992, 1994) describe the methodology for using GPS to monitor atmospheric

water vapor from ground-based GPS sites and explore the error analysis of GPS precipitable water.

Duan et al. (1996) provide the first direct estimation of integrated precipitable water (IPWV) by

eliminating any need for external comparison with water vapor radiometer observations.  Businger

et al. (1996) describe meteorological applications of atmospheric monitoring by GPS for use in

weather and climate studies and in numerical weather prediction models.

The National Oceanic and Atmospheric Administration (NOAA) Forecast Systems

Laboratory established the first GPS network dedicated to atmospheric remote sensing of water

vapor (Wolfe and Gutman 2000).  Since its inception in 1994, the NOAA GPS network has been

steadily expanding, with GPS receivers sited or planned in all 50 states.  Florida, like many other

states, has plans to develop a relatively large network of GPS receivers for applications other than

weather forecasting (Fig. 1).  The dual use of these sites, however, is expected to provide valuable

data for the improvement of short-term cloud and precipitation forecasts, with consequent

improvements in transportation safety.  Recently, a sliding window technique for processing the

GPS was developed jointly at UH and Scripps and implemented operationally at FSL that provides

estimates of IPW every 30 minutes with about 18 minutes latency and an accuracy of ~3.5% (Fig.

2).  GPS IPWV data are available in near real time on the web, courtesy of NOAA/FSL at

http://gpsmet.fsl.noaa.gov/realtimeview/jsp/rti.jsp.
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In this paper we describe a statistical approach that combines IPWV data from a GPS site

located at the Kennedy Space Center with other meteorological data to develop a new GPS

lightning index.  The goal of this effort is to improve the skill in forecasting a first strike at Cape

Canaveral and the Kennedy Space Center.

2. Data Resources

The thunderstorm season is from May through September.  Data for the 1999 summer season

were divided into two periods, a pre-season (14 April - 9 June 1999) and a thunderstorm season (10

June - 26 September 1999).  These particular dates were chosen on the basis of the distribution of

thunderstorms and the data availability associated with instrumentation down time.

The thunderstorm season data were used to create the logistic regression model that

comprises the GPS lightning index.  Thunderstorm season data contained 46 event days and

provided robust predictor data.  During this season, GPS IPWV values are much higher and show

more variability than in the winter and preseason. The preseason data were reserved for an

independent test using the GPS lightning index results.

Cape Canaveral has a dense array of weather sensors. One of the challenges of this research is

determining which meteorological variables would add skill in a lightning prediction index.

Twenty-three potential predictors were initially evaluated (Table 1).  The availability of realtime

GPS IPWV was the primary motivation for the undertaking the research presented in this paper.

Since October 1998, GPS IPWV data have become available with 30-minute temporal resolution

for a GPS site located at 28.48 N. latitude, 80.38 W longitude, roughly the center of the Cape just

north of the primary landing strip.  Data for this research cover one year from October 1998 to

October 1999.  The GPS site had missing data, mostly due to communications problems between
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the site and the facility that collects the data for NOAA/FSL.  Data from any day that contained

partial data loss were eliminated from the analysis.

Cape Canaveral data resources offered benefits that make this study possible.  Upper air

soundings are often taken more than twice a day pending various launches and weather conditions,

so there is a slight increase in the temporal resolution. Also, there are observers at the Cape 24

hours a day.  Adding a human element to the observation codes, especially in the remarks section,

provided an increase in understanding of the meteorological conditions.  Electric field mills

provided another source of data in this investigation.  There are 31 field mills that measure the

electric potential of the atmosphere in volts/meter (V/m) every five minutes.  The maximum field

mill value was used for the 30-minute window ranging from the top of the hour until the half-hour

mark.  This maximum value was assigned to the GPS IPWV value taken 15 minutes after the hour.

From the half-hour mark to the top of the hour, that value was assigned with the GPS IPWV value

taken 45 minutes after the hour.  Typical fair weather electric field mill values ranged from 70 V/m

to 800 V/m.  During inclement weather when the potential for lightning existed, values would

increase substantially, sometimes reaching values of 12,000 V/m during a lightning event. The only

suspect values were around 1000 UTC (0500 EST).  From a normal field of 100-200 V/m just

before 1000 UTC, field mill values would jump, sometimes up to 3000 V/m for what appeared to

be no meteorological event.  Marshall et al. (1999) explain this sunrise effect as the local, upward

mixing of the denser, low-lying, electrode-layer charge.

Other variables investigated for the GPS lightning index include 700-mb vertical velocity

from the ETA model, total totals (TT) index, k-index (KI), freezing level from rawinsondes, and

surface temperature, dewpoint, pressure, and wind direction taken from station observations.  The

KI considers the static stability of the 850-500-mb layer.  The KI is given by the equation
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KI = T850 - T500 + Td850 - (T700 - Td700),  (1)

where T850 and Td850 are the dry bulb temperature and dewpoint at 850 mb, and T500 is the dry bulb

temperature 500 mb.  The quantity T700 - Td700 is the 700-mb dewpoint depression.  In order for the

KI to correspond with the 30-minute GPS temporal resolution, KI values were interpolated linearly

between sounding times.

Finally, Lightning Detection and Ranging (LDAR) data were used as ground truth to verify

when and where a lightning event occurred.  LDAR data are voluminous; the sensors detect step-

leaders. With a time resolution on the order of milliseconds, one lightning flash can have up to

20,000 LDAR points, and one thunderstorm can have thousands of flashes, so one thunderstorm

can have up to tens of millions of LDAR points.  These LDAR points (in meters) are ranged from a

central site in the x, y, and z directions.  A point is classified as a new flash if the new point is 300

milliseconds (ms) later or 5000 meters from the previous point.  Also, two or more points make a

flash. This is same criterion that the National Weather Service, Melbourne FL, uses to actually

verify step-leader points as a lightning flash.  In the research presented in this paper, the first strike

was verified using LDAR data and matched to the nearest corresponding GPS IPWV data.

3.  Development of a Lightning Prediction Index

a. Logistic Regression

Regression methods provide the best opportunity for data analysis concerned with describing

the relationship between a response variable and one or more predictor variables.  Since the event

to be forecast was the first strike of a lightning event, a binary logistic regression model was

chosen as opposed to a linear regression model.
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What distinguishes a logistic regression model from a linear regression model is that the

outcome variable in logistic regression is binary or dichotomous (Hosmer and Lemeshow 1989).

The two outcomes are yes the lightning event occurred or no it did not.

The quantity πj= E(Y|xj) represents the conditional mean of a lightning strike (Y) given a

predictor (x) when the logistic distribution is used.  The specific form of the logistic regression

model is

j =
e

0 + xj( )

1 + e
0 + x j( )  , (2)

where πj is the probability of a response for the jth covariate, β0 is the intercept, β  is a vector of

unknown coefficients associated with the predictor, xj is a predictor variable associated with the jth

covariate.  Next, Hosmer and Lemeshow (1989) use a logit transformation of πj defined as

g(πj) = ln [(πj)/(1-πj)]= β0 + βjXj (3)

The importance of this link function is that g(πj) has many of the desirable properties of a linear

model.  The logit g(x) is linear in its parameters, may be continuous, and may range from -∞ to +∞,

depending on the range of x.

b. The Predictors

In order to determine what variables contribute significantly in the regression, the initial set

of predictors included 23 in all (Table 1).  In the table changes in IPWV with time (∆-hr IPWV) for

periods ranging from 1 to 12 hours are designated as variables 2 through 13.  The purpose of

including changes in IPWV is to capture differences in the air mass moisture over various periods

of time.  Positive values indicate that IPWV has increased over the time interval.
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Logistic regression model output shows the estimates of the coefficients, standard error of the

coefficients, z-values, p-values, and a 95% confidence interval for the odds ratio.  Predictors that

did not meet the 99% significance level, sometimes called the p-value, in the model results were

eliminated.

Model output of the initial 23 variables left only four predictors that met the 99% significance

level.  These four are electric field mill maximum (V/m), GPS IPWV, ∆ 9 hr IPWV, and KI.  The

coefficient of each predictor is the estimated change in the link function with a one-unit change in

the predictor, assuming all other factors and covariates are the same. Given the fact that three of the

variables are sensitive to moisture, it important to note that they are not well correlated.  The

highest correlation coefficient was 0.47 between IPWV and KI.

Statistical hypothesis testing is carried out by setting up a null hypothesis.  If we set the

coefficients to zero as the null hypothesis, the estimated coefficients in Table 2 show that the

remaining predictors all have a p-value ≤ 0.01. This indicates that the parameters are not zero with

a 99% significance level, and we can reject the null hypothesis and use our estimated coefficients.

Further, review of the odds ratios in Table 2 indicates that some predictors have a greater impact

than others.  An odds ratio very close to one indicates that a one-unit increase minimally affects a

lightning event.  A more meaningful difference is found with ∆-9 hr IPWV.  An odds ratio of 1.38

indicates that the odds of a lightning event increase by 1.38 times with each unit increase.  The z-

value is obtained by dividing the coefficient by its standard deviation.  Dividing by the standard

deviation weights the accuracy of the coefficient. Smaller standard deviations lead to larger z-

values, positive or negative.  Table 2 reflects the top four z-values and provides strong evidence

that the coefficients are highly accurate and belong in the GPS lightning Index.
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c. Relationship Between Predictors and Predictand

  The relationship between time series of discrete events can be studied by a technique known as

the superposed epoch method (Panofsky and Brier 1958).  The first strike of lightning is defined as

a discrete event since it is the critical component of the forecast for the Cape.  Since lightning

occurs at various times of the day, the superposed epoch method creates composites of the data

surrounding the 27 lightning events during the thunderstorm period.  For each lightning event the

time of first strike was denoted as T0.  Hours prior to that key time were denoted as T0-1, T0-2, T0-3,

etc.  Figure 3a depicts the composite GPS IPWV values leading up to the first strike.  The general

increase in IPWV suggests a correlation between increasing IPWV values and the time of the first

strike.  Contrary to GPS IPWV, electric field mill values show random fluctuations leading right up

to the first strike when the field mill values spike up to indicate a lightning event has occurred.  In

this case, there is very little warning time for forecasting lightning events.  This predictor remains

in the model because of its relationship with lightning 90 minutes prior to the first strike (Fig. 3a).

Although this figure shows slight increases up until the first strike itself, in the 5-minute resolution

(raw), the increases are much more dramatic.

Days containing no lightning at all, non-event days, have IPWV values that hover around 35

mm.  The non-event graph depicts average GPS IPWV values for 20 days during the thunderstorm

period (Fig. 3b).  As seen in the graph, the 24-hr run is relatively flat, exhibiting minor fluctuations,

including subtle nocturnal decline from 3:15 UTC (2200 EST) until 11:15 UTC (0600 EST) and a

rise to 18:15 UTC (13:15 EST), that can be attributed to solar heating.

A series of scatter diagrams was used to document relationships between the predictors and

the lightning events. The scatter plots show data for all thunderstorm days.  Only the 30-minute

data up to the time of the first lightning strike are plotted.  No data following the first strike are
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included in the plots.  Lightning events were considered independent if there was a 12-hr period

between the end of one lightning event and the  of another.  Figure 4a shows GPS IPWV values >

35 mm are more conducive for lightning strikes.  Conversely, no first strike events were noted

when the GPS IPWV values were < 33 mm.

When the KI is plotted with electric field mill data (Fig. 4b), a clear bias is present.

Lightning events are much more likely to occur when the KI was > 26.  This stability index proved

more relevant than the total totals index.  A study on nowcasting convective activity for the KSC

conducted by Bauman et al. (1997) concluded that of all the stability indices, only the KI was

found to have a modest utility in discriminating convective activity.  This can be attributed to the

fact that the KI captures a moisture layer from 850mb to 700mb, as opposed to just one reference

point of 850-mb dewpoint temperature by total totals.  Typical Cape KI values ranging from 26-30

yield an air mass thunderstorm probability of 40-60%.  A value of 31-35 yields a probability range

of 60-80%, and 36-40 yields a probability of 80-90%.  Values for this study hover around 50-60%,

similar odds as flipping a coin.

Initially, changes of IPWV for one hour were used. Eventually, this was carried out to 12-hr

IPWV changes.  Again, the superposed epoch method was applied to the data. Use of the hourly ∆-

1 to ∆-12 hourly IPWV predictors enabled the GPS lightning index to capture the IPWV changes

of the air mass. As it turned out (statistically), the ∆9-hr IPWV predictor had more impact than the

other ∆IPWV predictors.  Looking at field mill values and ∆1-hr IPWV (Fig. 4c), lightning

indicators values are scattered on either side of the zero line with the average value around 2.5 mm.

When compared to the ∆9-hr IPWV plot (Fig. 4d), average ∆9-hr IPWV values are double the ∆1-

hr averages and indicate no lightning strikes occurred below the zero line. Other intervals, such as

∆6 hr IPWV (not shown), do show a tendency of increased lightning as IPWV increased.
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However, with the logistic regression model, the ∆9-hr IPWV prevails statistically as the best

predictor. The ∆9-hr IPWV exhibits the most prominent increase of IPWV in the 5 hours prior to

that first strike (Fig. 5).

The ∆9-hr IPWV predictor refers to a timeframe 9 hours prior to the first strike. Therefore,

the ∆9-hr IPWV examines changes in IPWV on meteorological events that span the course of 9

hours. Figure 6 shows that most of the lightning events occur in mid to late afternoon. Mechanisms

linked to this timeframe may include effects attributed to the diurnal cycle of solar heating and

moisture properties associated with the sea breeze and, as discussed in the introduction, the impact

of synoptic circulations.

The relationship between change in GPS IPWV and lightning occurrence proves a little more

challenging to explain.  Increases in the ∆9-hr IPWV indicate an increase in the amount of mid-

level moisture that plays an important role in the stability of convective clouds. Moist air (as

opposed to dry air) being entrained into these clouds will result in an increase in their buoyancy.

A possible mechanism for increased midlevel moisture is the interaction of various mesoscale

boundaries associated with the geography in central Florida.  A strong sea breeze from the western

peninsula coast advances and interacts with the eastern coastal sea breeze.  The ∆9-hr IPWV

predictor could be detecting the increased moisture associated with sea breeze fronts. Other

mechanisms include deeper moisture associated with southwesterly flow regimes, indicating an

increase in the maritime moist layer (Reap 1994).

Another important mechanism is dynamics associated with the passage of jet streaks aloft

(Bauman et al. 1997).  Divergence aloft is associated with jet entrance and exit regions and draws

moisture up to mid-levels in the troposphere.
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4. Assessing the Utility of the GPS Lightning Index

To determine the effectiveness of the GPS lightning index in describing the outcome variable,

the fit of the estimated logistic regression must now be assessed.  This is referred to as goodness of

fit.  Hosmer and Lemeshow (1989) recommend three methods to determine goodness of fit;

Pearson residual, deviance residual, and the Hosmer-Lemeshow test (Table 3).  They also introduce

a decile of risk method for observed and expected frequencies (Table 4) as well as measures of

association between the response variable and the predicted probabilities (Table 5).

The p-values range from 0.605 to 1.000 for the Pearson and deviance residuals and for the

Hosmer-Lemeshow tests (Table 3).  This indicates that there is sufficient evidence for the model

fitting the data adequately.  If the p-values were less than the accepted level (0.05), the test would

indicate sufficient evidence for a conclusion of an inadequate model fit.

The results of applying the decile of risk grouping strategy to the estimated probabilities

computed from the model for lightning strikes are given in Table 4.  The data in Table 4 are

grouped by their estimated probabilities from lowest to highest in 0.1 increments.  Thus, group 1

contains the data with the lowest estimated probabilities (<0.1) while group 10 contains data with

the highest estimated probabilities (>0.9). Since the total number of lightning strikes is 995, each

decile group total must be evenly distributed for proper comparison. Therefore, the Hosmer and

Lemeshow strategy breaks down each group into a total of 99 or 100 events.

The following will help explain the meaning of Table 4.  The observed frequency in the yes

(y=0, a lightning strike) group for the seventh decile (<0.7) of risk is 26, meaning that there were

26 lightning events actually observed from the seventh decile group.  These are the events that

have an estimated probability of occurring of <0.7. In a similar fashion the corresponding estimated

expected frequency for this seventh decile is 25.8, which is the sum of the modeled probabilities
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for these lightning events to occur.  The observed frequency for the no lightning (y=1) group is 99-

26 = 73, and the estimated frequency is 99-25.8 = 73.2. Table 4 provides sufficient evidence that

the model does fit the data well because the observed and expected frequencies are very close.

The values in Table 4 are calculated by pairing the observations with different response

values.  Here 221 yes lightning strikes and 774 no lightning events were recorded during the

thunderstorm period.  This results in 221*774 =171054 pairs with different response values.  Based

on the GPS lightning index, a pair is concordant if the yes lightning event has a higher probability

by the sum of their individual estimated probabilities being greater than the observed lightning

events, discordant if the opposite is true, and tied if the probabilities are equal.  These values are

used as a comparative measure of prediction.  Measures of association (Table 5) show the number

and percentage of concordant, discordant, and tied pairs.  These values measure the association

between the observed responses and the predicted probabilities.

a. Testing the GPS Lightning Index

The lightning index was tested on data from the thunderstorm season.  In order obtain the

proper predictand (index value), Wilks (1995), suggests using

ˆ y =
1

1 + e x p (0  + 1 x 1 +  2  x 2 +  3 x 3 + 4  x 4 )
 , (4)

where ˆ y  is the predictand (index value), β the coefficients for each predictor, x the value of the

predictor, and the subscripts indicate which predictor it is for.  In this case, using the GPS lightning

index coefficients for each predictor, Eq. (5) becomes

ˆ y =
1

1 + e x p (−6.7866 +.0011359x1 +  .06063x2 +  0.32341x3 +.06728x4)
  (5)
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The meaning of this equation is most easily understood in the limits, as (β 0 + β1 x 1+ β2x 2 + β3 x 3

+β4x4) → ± ∞.  As the exponential function in the denominator becomes arbitrarily large, the

predicted value approaches zero, indicating a lightning strike.  As the exponential function in the

denominator approaches zero, the index value approaches one, indicating a non-event.  Thus, it is

guaranteed that the logistic regression will produce properly bounded probability estimates.  The

index value was calculated for the entire data set for both test periods.

The index time series for each day during the thunderstorm period were reviewed to identify

recurring patterns and the best index threshold value (ITV).  Index values for non-event days

typically fluctuate very close to 1.0 (Fig. 7).  When index value falls below 0.7, lightning events

follow.  An ITV of 0.7 showed the best predictive skill was proved to be best suited for a forecast

threshold.  A level of 0.8 often recovered to 0.9, indicating a non-lightning event, while a level of

0.6 provided insufficient lead time before the first strike.  A running mean time series of index

values 10–12 hours prior to the first strike graphically captures the predictive value of the GPS

lightning index.  Figures 7c-e depict typical lightning event days.  In these cases, the ITV was

reached up to ten hours prior to the first strike.

b. Categorical Forecasts for the Thunderstorm Season

Forecast verification is needed to test the predictive accuracy of the GPS lightning index.

Anytime the index value fell below the ITV and up to 90 minutes prior to first strike (meeting 90

minutes desired lead time), it was counted as a yes forecast.  A contingency table (Table 6) is used

to evaluate the GPS lightning index’s prediction capabilities (Wilks 1995).  For the thunderstorm

period (subscript n), there were a total of 46 days evaluated.  Twenty-five thunderstorms days were

observed and forecast by the GPS lightning index (quadrant a).  Five thunderstorms days were
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forecast to occur but did not (quadrant b).  Three storm days were observed to occur but the model

failed to respond (quadrant c).  In 13 remaining days the model did not forecast a lightning event

and none was observed (quadrant d). The data from these quadrants are now used to determine the

accuracy measures for a binary forecast.  In particular the false alarm rate (FAR) is a measure of

the forecast events that fail to materialize: FAR = b/(a+b).  The probability of detection (POD) is a

measure of the forecast events that did occur: POD = a/(a+c).  The results of these calculations are

shown in Table 7.  The GPS lightning index proved its utility, particularly in the area of false alarm

rates (FAR).

Although the thunderstorm season data are not statistically independent, the application of the

GPS lightning index to these data reduced the FAR to 16.6%.  This is a decrease of 26% of the

KSC’s previous FAR.  The probability of detection (POD) result was only 8% less than the KSC

POD for last season.  In making these comparisons it should be noted that the time window of the

GPS lightning index is 12.5 hours.  The time window associated with KSC forecasts varies with

synoptic situation, but is 4 to 6 hours on average.

c. Categorical Forecasts for the Independent Preseason

Using the same 90-minute desired lead time and ITV criteria for the independent preseason

(subscript i, Table 6), there were a total of 21 days evaluated.  Seven thunderstorms days were

observed and forecast by the GPS lightning index (quadrant a).  Three thunderstorm days were

forecast to occur but did not (quadrant b). One storm day was observed to occur but the model

failed to respond (quadrant c).  In 10 remaining days the model did not forecast a lightning event

and none was observed (quadrant d). The data from these quadrants are again used to determine the
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accuracy measures for a binary forecast (FAR and POD). The results of these calculations are

shown in Table 8.

GPS lightning index results for FAR in the independent preseason were 13.2% lower than

KSC results of 43.2% (Table 8).  POD was down by only 10%.  These measures could easily be

improved by adding forecaster’s input of additional knowledge.  Reference to satellite and Doppler

radar data would give a forecaster the benefit of knowing the tracks and intensities of

thunderstorms moving into the area.  The GPS lightning index’s capability to improve FARs would

enhance mission readiness.  Mission functions that cease for lightning would not be delayed by a

forecast of lightning that does occur.

Results for the thunderstorm season are slightly better than for the preseason.  This is

attributed to seasonal availability in the moisture of the atmosphere during the summer season.

The GPS trends show an increase in the amount of IPWV as well as more fluctuations during the

thunderstorm season.

As with any attempt to forecast a meteorological event, timing is critical.  The lightning

model output indicates a potential  when the ITV is met.  To get a better understanding of how the

GPS lightning index performs with regard to the timing of the first strike, the distribution of lead

times once the ITV is met is plotted in Fig. 8a.  A wide range of lead times (0-12 hours) is see, with

an approximately normal distribution.  The majority of the lead-times fall between 3 and 7.5 hours.

d.  Missed Events

During the independent test the first missed event occurred on 19 May 1999 (Fig. 8b).  The

GPS lightning index forecast the lightning event, but on1y 1 hour prior to first strike, thus not

meeting the 90-minute required lead time.  An event on 13 May 1999 is a prime example of a false
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alarm (Fig. 8c).  Observations on this day show early morning fog that may have inhibited

development of convection.  However, the ITV was met and no lightning occurred.

The GPS lightning index was checked to see how it handled rain showers with no lightning,

nocturnal events, and back to back events.  Figure 8d depicts a day marked by distant nocturnal

lightning (>30 nm from KSC), morning fog, and afternoon towering cumulus in all quadrants.

Although the index shows fluctuations, the ITV was never met, and the lightning index correctly

handled this event.  During a nocturnal example (Fig. 8e), the ITV was met seven hours prior to the

first strike around midnight.  Finally, the lightning index captured back-to-back events (Fig. 8f).  In

this case, a nocturnal thunderstorm ended just around midnight.  Nine hours later the ITV was met

and the first strike followed 4.5 hours later.

An interesting phenomena that occurs frequently in the time series after the ITV is met, is the

tendency for a flatness or increase in the index prior to the first strike (e.g., Figs. 7e and f and Fig.

8e).  This may be a reflection of compensating mesoscale subsidence associated with developing

thunderstorms drying out the atmosphere above the GPS site.

5. Summary and Conclusions

A new GPS lightning index is developed to provide a tool for forecasting the Kennedy Space

Center’s primary weather challenge.  A thunderstorm season (6/10/99 – 9/26/99) and a preseason

(4/14/99 – 6/9/99) were chosen to develop and evaluate the GPS lightning index after examining a

year’s worth of operational GPS IPWV data with reference to the climatology of lightning

occurrence in southern Florida.  A binary logistic regression model was used to identify which of a

set of 23 predictors contributed skill in forecasting a lightning event.  Four predictors proved
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important for forecasting lightning events; maximum electric field mill values, GPS IPWV, the 9-

hour change (∆9-hr) of IPWV, and K index.

Maximum electric field mill values increased substantially during inclement weather when

the potential for lightning existed, sometimes reaching values of 12,000 V/m during a lightning

event. But this variable lacked sufficiently long-term (90-minute plus) predictability.  Composites

of GPS IPWV and ∆9-hr IPWV several hours prior to an initial lightning strike show an increase of

precipitable water for the site. By using current GPS-IPWV and ∆9-hr IPWV values, the model

captures the current IPWV of the atmosphere but also changes in mid-level moisture associated

with diurnal and synoptic scale circulations.  The KI diagnoses convective activity by examining

the moisture in the layer from 850 mb to 700 mb and the stability of the lapse rate.  Given the fact

that the three of the variables are sensitive to moisture, it important to note that they are not well

correlated.  The highest correlation coefficient was 0.47 between IPWV and KI.

The GPS lightning index is a binary logistic regression equation that includes the four

predictors multiplied by their coefficients.  When a time series of the GPS lightning index is

plotted, a common pattern emerges.  Whenever the lightning index drops to 0.7 or below, lightning

follows within 12.5 hours.  An index threshold value (ITV) of 0.7 was identified, and lightning

events are forecast whenever the ITV is met.  Forecast verification results obtained by using a

contingency table revealed a 26.6% decrease from the Cape’s previous season false alarm rates

during the thunderstorm season, while obtaining a 13.2% decrease in false alarm rates for the

preseason.  For the KSC, a decreases in false alarm rates means that missions will not be halted for

a forecast lightning event that does not occur.  Additionally, the Cape met their desired lead time

(90-minute notification) 79.1% of the time last year.  Because the forecast verification was set up

with reference to the 90-minute desired lead time criteria, POD results from the thunderstorm test
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period (89.2%) and the preseason (87.5%) also reflect the desired lead time statistic.  In this

research, if a storm failed to meet the desired lead it was counted as a missed event.  Thus, the GPS

lightning index also improves the previous lead time at KSC by 10%.

The primary utility of the GPS lightning index is in alerting a forecaster to the possibility of

lightning.  Armed with the lightning index time series, a forecaster can improve the lead time and

false alarm rate in lightning forecasts.  However, the lightning index has a fairly large time window

within which the lightning can occur.  Therefore, the forecaster needs to rely on other resources

such as radar and satellite to help refine the timing of the lightning event.

Future work will consist of testing the GPS lightning index using data from future

thunderstorm seasons.  It may be possible to refine the index with the addition of predictor

variables not included in this study, such as low-level divergence, thunderstorm motion, radar data,

instability indices, etc.

If the GPS lightning index fulfills its early promise, it may be useful to consider a similar

statistical approach to help predict related weather phenomena.  Observations show a correlation

between increases of GPS IPWV and heavy precipitation (Businger et al. 1996), suggesting that a

logistic regression model could provide the basis for a new flash-flood index.
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List of Figures

Fig. 1 Current and planned GPS Sites in Florida.

Fig. 2 Comparison of column integrated water vapor from rawinsondes launched by the 45th

Weather Squadron at Patrick AFB, Florida (circles) with GPS observations made at the

U.S. Coast Guard Differential GPS site (CCV3) at Cape Canaveral, Florida.

Rawinsonde data courtesy of Susan Derussy.

Fig. 3 (a) Average time series of GPS IPWV and maximum electric field mills values for the

hours leading up to a lightning strike.  (b) GPS IPWV 24-hour average time series for

non-event weather days.

Fig. 4 (a) Scatter plot of average electric field mill values and GPS IPWV.  (b) Scatter plot of

average electric field mill values and K index.  (c) Scatter plot of average electric field

mill values and ∆1-hr GPS IPWV.  (d) Scatter plot of average electric field mill values

and ∆ 9-hr GPS IPWV.  White diamonds denote lightning detected, black asterisks

denote no lightning detected.

Fig. 5 Composite time series of the average change in ∆ 9-hr GPS IPWV from one hour to the

next, using the superposed epoch method with the time of the first strike defined as the

zero hour.

Fig. 6 Histogram of time of day of lightning occurrence at Cape Canaveral.  Histogram

includes data from both test periods.

Fig. 7 Time series of GPS lightning index for (a) a non-event day, 5 July 1999, (b) a non-event

day, 15 July 1999, (c) a non-event day, 18 July 1999, (d) a lightning event on 3 July

1999, (e) a lightning event on 10 Jul 1999, and (f) a lightning event on 1 August 1999.
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Fig. 8 (a) Time in hours prior to first-strike that LTV was met for all thunderstorms.  Time

series of GPS lightning index for (b) a lightning event in which the desired lead time was

not met on 19 May 1999, (c) a false alarm event on 13 May 1999, (d) a day with no

lightning event on 20 May 1999, (e) a nocturnal lightning event on 21-22 July 1999, and

(f) back to back lightning events on 9 August 1999.
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Table 1 Initial Predictors

      Predictors                                                      Source of data

1.   GPS IPWV
GPS Sensor

2-13. ∆IPWV* from 1 to 12 hours GPS Sensor
14. 30 min Field Mill Averages Electric Field Mill
15. 30 min Field Mill Maximums Electric Field Mill
16. Temperature GPS Sensor
17. Pressure GPS Sensor
18. Dewpoint Temperature Surface Observation
19. Total Totals RAOB
20. Freezing Level RAOB
21. Wind Direction Surface Observation
22. K Index RAOB
23. 700 mb Vertical Velocity ETA Model
* ∆ means change

Table 2 Logistic Regression Table

Predictor Coefficient Standard
Deviation

Z-Value p-Value Odds
Ratio

Constant -6.7866 0.7208 -9.42 0.000
Max V/m 0.0011359 0.0002923 3.89 0.000 1.00
IPWV 0.06063 0.01467 4.13 0.000 1.06
∆9 IPWV 0.32341 0.02961 10.92 0.000 1.38
K-Index 0.06728 0.02081 3.23 0.001 1.07
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Table 3 Goodness of Fit Tests

Method p-Value
Pearson Residual 1.000
Deviance Residual 1.000
Hosmer-Lemeshow .605

Table 4 Observed and Expected Frequencies

Group
Value 1 2 3 4 5 6 7 8 9 10 Total
Yes
Obs 0 0 2 6 16 15 26 38 42 76 221
Exp .3 1.1 2.7 6.2 11.2 17.5 25.8 35.2 47.6 73.3
No
Obs 99 100 97 94 83 85 73 62 57 24 774
Exp 98.7 98.9 96.3 93.8 87.8 82.5 73.2 64.8 51.4 26.7
Total 99 100 99 100 99 100 99 100 99 100 995

Table 5 Measures of Association

Pairs Number Percent
Concordant 146424 85.6%
Discordant 24299 14.2%

Ties 331 .2%
Total 171054 100%
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Table 6 Contingency Table for Categorical Forecast of Discrete Predictands.

Observed
       Yes                 No

an = 25
ai = 7

bn = 5
bi = 3
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cn = 3
ci = 1

dn = 13
di = 10

Relationship between counts (letters a-d) of forecast event pairs for the dichotomous categorical

verification.  Quadrant a denotes the occasions when the lightning was forecast to occur and did.

Quadrant b denotes the occasions when the lightning was forecast to occur but did not. Quadrant

c denotes the occasions when the lightning was not forecast to occur but did. Quadrant d denotes

the occasions when the lightning was not forecast to occur and did not. Subscripts n and i

indicate non-independent test (thunderstorm period) and independent test  (preseason).
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 Table 7  Thunderstorm Season Test Results (10 June to 26 September 1999).

                                                                  GPS Lightning                 KSC Results
                                                                  Results                         From 1999 Season
False Alarm Rate: 16.6% 43.2%
Hit Rate: 82.6% N/A
Threat Score: 75.6% N/A
Probability of Detection: 89.2% 97.5%

Table 8  Independent Test Results (Preseason, 14 April to 9 June 1999).

                                                            GPS Lightning               KSC Results
                                                                  Results                        From 1999 Season
False Alarm Rate:         30% 43.2%
Hit Rate: 80.9% N/A
Threat Score: 63.6% N/A
Probability of Detection: 87.5% 97.5%


















